Si tunneling transistors with high on-currents and slopes of 50 mV/dec using segregation doped Nisi2 tunnel junctions

نویسندگان

  • Lars Knoll
  • Qing-Tai Zhao
  • Stefan Trellenkamp
  • Anna Schäfer
  • Konstantin Bourdelle
  • Siegfried Mantl
چکیده

Planar and nanowire (NW) tunneling field effect transistors (TFETs) have been fabricated on ultra thin strained and unstrained SOI with shallow doped Nickel disilicide (NiSi2) source and drain (S/D) contacts. We developed a novel, self-aligned process to form the p-i-n TFETs which greatly easies their fabrication by tilted dopant implantation using the high-k/metal gate as a shadow mask and dopant segregation. Two methods of dopant segregation are compared: Dopant segregation based on the “snowplough” effect of dopants during silicidation and implantation into the silicide (IIS) followed by thermal outdiffusion. High drive currents of up to 60 μA/μm of planar p-TFETs were achieved indicating good silicide/silicon tunneling junctions. The non linear temperature dependence of the inverse subthreshold slope S indicates typical TFET behavior. Strained Si NW array n-TFETs with omega shaped HfO2/TiN gates showed high drive currents of 7 μA/μm @ 1V Vdd and steep inverse subthreshold slopes with minimum values of 50mV/dec due to the smaller band gap of strained Si and optimized electrostatics.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Switching Performance of Nanotube Core-Shell Heterojunction Electrically Doped Junctionless Tunnel Field Effect Transistor

Abstract: In this paper, a novel tunnel field effect transistor (TFET) is introduced, thatdue to its superior gate controllability, can be considered as a promising candidate forthe conventional TFET. The proposed electrically doped heterojunction TFET(EDHJTFET) has a 3D core-shell nanotube structure with external and internal gatessurrounding the channel that employs el...

متن کامل

Steep Turn On/Off "Green" Tunnel Transistors

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. To copy otherwise, to republish, to post on servers or to redistribute to lists, requires prior specific permission....

متن کامل

Electrostatically Doped Heterojunction TFET with Enhanced Driving Capabilities for Low Power Applications

This paper projects the enhanced drive current of a ntype electrostatically doped (ED) tunnel field-effect transistor (ED-TFET) based on heterojunction and band-gap engineering via TCAD 2-D device simulations. The homojunction ED-TFET device utilizes the electrostatic doping in order to create the source/drain region on an intrinsic silicon nanowire that also felicitates dynamic re-configurabil...

متن کامل

Novel gate - recessed vertical InAs / GaSb TFETs with record high ION of 180 A / m at

Vertical tunnel field-effect transistors (TFETs) in which the gate field is aligned with the tunneling direction have been fabricated using a novel gate-recess process, resulting in record on-current. The tunnel junction consists of InAs/GaSb with a broken band alignment. The gate-recess process results in low drain contact and access resistances; together with the favorable broken gap heteroju...

متن کامل

Ballistic (n,0) Carbon Nanotube Field Effect Transistors' I-V Characteristics: A Comparison of n=3a+1 and n=3a+2

Due to emergence of serious obstacles by scaling of the transistors dimensions, it has been obviously proved that silicon technology should be replaced by a new one having a high ability to overcome the barriers of scaling to nanometer regime. Among various candidates, carbon nanotube (CNT) field effect transistors are introduced as the most promising devices for substituting the silicon-based ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012